

Summary

- COSY: cross peaks due to J-coupled ¹H pairs
 - Diagonal peaks are trivial
 - Cross peaks are mostly due to $^2 J$ or $^3 J,$ sometimes due to $^4 J$
- HMQC: cross peaks due to directly bonded ¹H-¹³C pairs
 - Carbon with equivalent directly-bonded protons shows one cross peak
 - Carbon with two non-equivalent directly-bonded protons shows two cross peaks
- DEPT: distinguish carbon types by number of protons bonded
 - 2D spectrum is composed of a series of 1D spectra
 - 1st detection is done indirectly
 - Cross peak is due to polarization transfer between the two detections
- NOESY, HMBC

- Experimental issues
 - How to enhance resolution by window functions

17