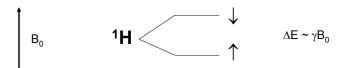
Introduction to 1D and 2D NMR Spectroscopy

(4) Vector Model and Relaxations

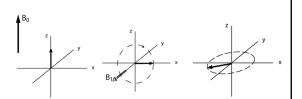

Lecturer: Weiguo Hu
7-1428
weiguoh@polysci.umass.edu

October 2009

1

Approximate Description 1: Energy level model

- Magnetic field aligns the nuclei to two directions
 - => energy level splitting
- Population ratio of the two states observes Boltzmann distribution
 - Practically, ratio very close to 1:1 due to the small energy difference
- Radio frequency (RF) pulse pumps nuclei from low energy to high energy level
 - Frequency of the pulse must be equal to the energy splitting "resonance"
- Helpful to understand relaxation phenomena
- Not accurate for describing many other NMR phenomena


Approximate Description 2: Vector Model

Spinning Top

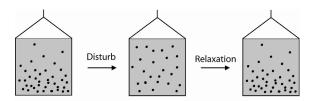
- Spinning top creates a "moment"
- When the moment is parallel to gravity, moment keeps constant
- When the moment is not parallel to gravity, it rotates around the gravity direction – "precession"

Nuclear Magnetic Moment

- Nuclear spin has a moment magnetic moment
- B₀ aligns the moments to up or down direction
 The net effect is up
- RF pulses create a small magnetic field B₁
- The "top" precesses around B₁ to xy plane
- Then the pulse stops and the flipped top precesses around B₀
- Only horizontal component of magnetic moment generates signal
- •Vector model is more useful than energy level model; suitable for:
 - •1D NMR
 - Relaxation
- cannot adequately describe coupled spins and 2D NMR

;

One Dimensional NMR in Vector Model 90°-y Iz Iz Vector Model "tops" are aligned with external field B₀ Pulse creates B₁; "tops" precession of "tops" around B₀ generates NMR signal

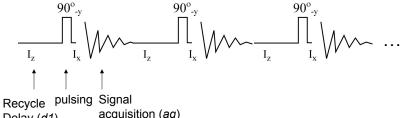

- A "90° pulse"
- What signal would we observe if we double the pulse length (make it a 180° pulse)?
- How about tripling the pulse length (a 270° pulse)?

5

Accurate Description: Density Operator

- Uses rigorous quantum mechanics
- Magnetic moments are expressed as matrices
- Pulses are expressed as operators to matrices
 - The most complete description
 - But less intuitive

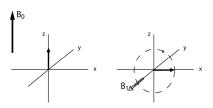
T₁ Relaxation

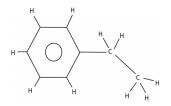

Equilibrium

Non-Equilibrium

Equilibrium

- Relaxation: process from high-energy (excited) state to low-energy (equilibrium) state
- Understanding of relaxation is critical for quantitative and certain 2D NMR

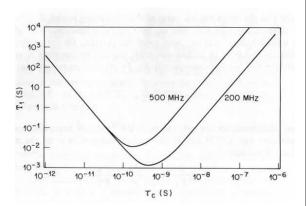

Experimental Considerations



- acquisition (aq) Delay (d1)
- T_1 is the time to recover to original magnitude in z direction after each pulsing
 - Low energy state: magnetic moment aligned with B₀
 - High energy state: magnetic moment on horizontal plane
- maximum signal is obtained when T₁ relaxation is complete
 - i.e. when recycle delay (d1) + acquisition (aq) is $\geq 5 T_1$

T₁ Relaxation: Important Factors

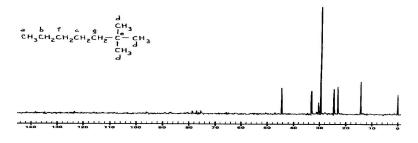
- T₁ relaxation must be facilitated by some energy source
 - Magnetization is very difficult to relax by itself "fluctuation" is necessary
 - apples will not fall if you don't shake the tree!
 - Reminder: T₁ is the relaxation of a nuclear energy state, driven by molecular motion
 - Fluctuation of dipolar coupling during molecule tumbling is the most important source of $\rm T_1$ relaxation for common organic molecules
 - Presence of a strong dipolar coupling (interaction between neighboring nuclei)
 - Not J-coupling
 - eg. CHCl₃ has a long ¹H T₁;
 - Aromatic protons have longer T₁ than aliphatic protons
 - Presence of molecular motion
 - Proton T₁ of typical solution nmr samples ~ 1-5 s; 13 C T₁ of diamond > 1000 s


9

Dipolar Coupling vs. J Coupling

	J-coupling	Dipolar coupling
Participants	Interaction between neighboring nuclei (1H-1H, 1H-13C, etc.)	same
Mechanism	Through Bond (very small at >=5 bonds away)	Through space (very small at >=6Å away)
Important effects	1H multiplets, COSY and HMQC correlation peaks	Relaxations, NOE, NOESY peaks (but not observable on spectra)

T₁ Relaxation and Motion


- Relaxation is the fastest when motion rate is close to resonance frequency
 - Swing goes the highest when you pump at the right pace
- Small molecules in solution are in the "fast motion regime"
- End groups of polymer usually have longer T₁ than the middle units
 - Significance in M_n measurement
- Molecules in crystalline or glassy solid are in the "slow motion regime"

11

T₁ Relaxation: Examples

- ¹H T₁ (CHCl₃) vs. ¹H T₁ (C₆H₆) vs. ¹H T₁ (C₆H₁₂)
 - Why do aromatic protons in ethylbenzene integrate to less than 5?
- ¹³C T₁ (non-protonated C) vs. ¹³C T₁ (protonated C)
- 13C T₁ of toluene
 - Methyl = 16 s
 - C1 = 89 s
 - C2 = 24 s
 - A fully quantitative 13C spectrum needs very long recycle delay!

NOE (Nuclear Overhauser Enhancement)

- Mechanism: relaxations of dipole-coupled nuclei pairs are related
 - Heteronuclear (eg. H-C) NOE and homonuclear (eg. H-H) NOE
- Effect 1: ¹³C signal is enhanced when surrounding protons are not fully relaxed
 - $-\,$ By keeping protons from relaxing (using a pulsing technique), we can enhance signal for $^{\rm 13}{\rm C}$
 - The enhancement is affected by the distance between ¹³C and ¹H
 - NOE is due to dipolar coupling (through-space)
 - Example: for CH₃COCH₃, NOE(<u>C</u>H₃)>>NOE (<u>C</u>O)
 - If you want to obtain quantitative ¹³C spectrum, you need to
 - Either make sure all carbons have the same enhancement coefficient
 - Or turn off NOE
 - 13C spectra with NOE: rpar C13CPD
 - ¹³C spectra without NOE: rpar C13IG
- Effect 2: NOE can be used to probe proton-proton distance (NOESY)

13

How to get quantitative NMR spectra

- All nuclei on the spectrum should be fully relaxed
 - Note: unprotonated carbons and lone protons have long T₁
- NOE should be suppressed
 - Or if you can make sure that the nuclei of interest all have the same NOE enhancement
 - For example, all protonated aliphatic carbons have roughly the same enhencement factor

Summary

- Three theoretical descriptions of NMR
- Vector model spins "precess" around magnetic field
 - The most useful model for general NMR users
 - Principle of a single pulse NMR experiment
- T₁ important for quantitative NMR
 - Needs dipolar coupling
 - e.g. quaternary carbon usually has longer T₁
 - Needs motion
 - Difference between dipolar coupling and J-coupling
- NOE